Semicompleteness of homogeneous quadratic vector fields
نویسندگان
چکیده
منابع مشابه
Phase Portraits for Quadratic Homogeneous Polynomial Vector Fields on S
Let X be a homogeneous polynomial vector field of degree 2 on S. We show that if X has at least a non–hyperbolic singularity, then it has no limit cycles. We give necessary and sufficient conditions for determining if a singularity of X on S is a center and we characterize the global phase portrait of X modulo limit cycles. We also study the Hopf bifurcation of X and we reduce the 16 Hilbert’s ...
متن کاملconstruction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولOn Algebraic Proofs of Stability for Homogeneous Vector Fields
We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sums of squares certificates and hence such a Lyapunov fun...
متن کاملPsi-Series of Quadratic Vector Fields on the Plane
Psi series i e logarithmic series for the solutions of quadratic vec tor elds on the plane are considered Its existence and convergence is studied and an algorithm for the location of logarithmic singularities is developed Moreover the relationship between psi series and non integrability is stressed and in particular it is proved that quadratic systems with psi series that are not Laurent seri...
متن کاملQuadratic $rho$-functional inequalities in $beta$-homogeneous normed spaces
In cite{p}, Park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}label{E01}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| \ && qquad le left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) - f(y)right)right|, nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2006
ISSN: 0373-0956,1777-5310
DOI: 10.5802/aif.2221